Nearly Optimal Interpolation of Data in C
نویسنده
چکیده
Given > 0, we compute a function taking prescribed values at N given points in R2, whose C2-norm is within a factor (1 + ) of least possible. The computation takes C( )N logN computer operations.
منابع مشابه
An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملApproximating optimal point configurations for multivariate polynomial interpolation
Efficient and effective algorithms are designed to compute the coordinates of nearly optimal points for multivariate polynomial interpolation on a general geometry. “Nearly optimal” refers to the property that the set of points has a Lebesgue constant near to the minimal Lebesgue constant with respect to multivariate polynomial interpolation on a finite region. The proposed algorithms range fro...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملOnline Interpolation Point Refinement for Reduced-Order Models using a Genetic Algorithm
A genetic algorithm procedure is demonstrated that refines the selection of interpolation points of the discrete empirical interpolation method (DEIM) when used for constructing reduced order models for time dependent and/or parametrized nonlinear partial differential equations (PDEs) with proper orthogonal decomposition. The method achieves nearly optimal interpolation points with only a few g...
متن کاملQuasi-interpolation by quadratic piecewise polynomials in three variables
A quasi-interpolation method for quadratic piecewise polynomials in three variables is described which can be used for the efficient visualization of gridded volume data. We analyze the smoothness properties of the trivariate splines. We prove that the splines yield nearly optimal approximation order while simultaneously its piecewise derivatives provide optimal approximation of the derivatives...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010